IUPAP Commission 17

Quantum Electronics

Working Group on Nanoscience

Richart E. Slusher Szeged, Hungary

September 2006

Commission Conferences

IQEC (International Quantum Electronics Conference)

- Moscow, Russia 2002
- Tokyo, Japan, 2005

International Symposium "Modern Problems of Laser Physics"

Novosibirsk, Russia 2004

Session Titles at IQEC 2005

Quantum Nanostructures, Optics, and Applications
 A. Forchel, Wuerzburg University
 "Strongly Coupled Single Quantum Dot-Microcavity System"
 D. Awschalom, University of California, Santa Barbara
 "Optoelectronic Control of Electron and Nuclear Spins in Semiconductor Nanostructures"

Cold Atoms, Cold Molecules, Collective Quantum Phenomena and Atom Optics

Similar to C15

New Trends in Chemistry, Biology and Other Fields

D. Miller, Stanford University

"Nanoresonators and Nanophotonics"

S. Fainman, Univ. California, San Diego,

"Ultra Short Surface Plasmon Polaritons in Photonic Crystal Structures"

Session Titles at IQEC 2005

Photonic Nanostructures and Devices

>Y. H. Lee, KAIST

"Photonic Crystal Nanolasers by Optical and Electrical Pump"

M. Notomi, NTT Basic Research Laboratories, "Nonlinear Switching by Photonic-Crystal Nanocavities for All-Optical Digital Processing"

Near-field Optics and Applications
 Y. Inoue, Graduate School of Frontier Biosciences

"Tip-Enhanced Near-Field Raman Spectroscopy for Molecular Nano-Imaging"

THz Emission and Spectroscopy

T. Norris, Michigan University
 "Nanoacoustics: Propagation and Imaging with THz Coherent Phonons"
 S. Komiyama, University of Tokyo
 "Photon Counting THz Imaging with Quantum-Dot Detectors"

Session Titles at IQEC 2005

- Nonlinear Optics and Materials
 H. Kamada, NTT Basic Research Laboratories
 "Coherent Nonlinear Effects in a Single Quantum Dot"
- Single Photon Emission and Entanglement States for Quantum Information
 J. Vuckovic, Stanford University
 "Single Photon Source Based on a Quantum Dot in Photonic Crystal"
- Dynamics of Photoinduced Phase Transition
 M. Rini, Lawrence Berkeley National Laboratory
 "On Photo-Induced Phase Transitions in Strongly Correlated Nanosystems"

Plenary Speaker

Prof. Zhores Alferov
 Director, The loffe Institute, Russia
 2000 Nobel Laureate in Physics
 "Past, Present and Future of Semiconductor Lasers and Related Nanophotonic Devices"

Harvard Prof. Charles Lieber's Group

A photoluminescence image of a Cadmium Sulfide nanowire.

A transmission electron microscope (TEM) image of a Cadmium Sulfide nanowire.

Future directions:

Nanowire Devices

Schematics: nanowire photonic crystal with four engineered defects (left) nanowire racetrack microresonator (right).

Scanning electron microscope micrograph of the nanowire photonic crystal (left) and optical micrograph of the nanowire racetrack microresonator (right).

C. Lieber group

New materials for nanophotonics

III-nitride-based nanowire radial heterostructures as multicolor and high-efficiency light-emitting diodes.

C. Lieber group⁸

New nanowire devices and structures

GaN p-n crossed nanowire blue LED. Epitaxially grown p-type GaN nanowire array. Nano Lett. 3, 343 (2003). Nano Lett. 3, 343 (2003).

Novel packages of nanodevices

Flexible plastic substrate containing arrays of nanowire devices. The devices do not degrade under the effect of bending 10 C. Lieber group

Future nanophotonics

Electrical injection lasers Single photon detectors Multi-color LED/laser arrays Photonic circuits & processors

Silicon modulators is a hot topic

Integration of nanophotonics and silicon CMOS

Integrated all-optical pulse regenerator in chalcogenide waveguides

Ben Eggleton's group CUDOS University of Sydney Australia

2900 OPTICS LETTERS / Vol. 30, No. 21 / November 1, 2005

CUDOS

Structure scaling

- Scanning electron micrographs
- Proportions maintained with reduction 50x
- Long wavelengths penetrate cladding evanescent!

12 July 2004 / Vol. 12, No. 14 / OPTICS EXPRESS 3209

Microstructured optical fiber photonic wires with subwavelength core diameter

Yannick K. Lizé ^{1,2}, Eric C. Mägi¹, Vahid G. Ta'eed¹, Jeremy A. Bolger¹, Paul Steinvurzel¹, and Benjamin J. Eggleton^{1,*}

Figure 5. Increased loss of a 3.5 µm outside diameter MOF photonic wire as a function of wavelength when index-matching fluid (n=1.515) covers the device. The solid curve shows the theoretical loss in this device due to radiation, while the dots show the experimental results.

Silica nanowires

6 February 2006 / Vol. 14, No. 3 / OPTICS EXPRESS 1070

Efficient Coupling to Chalcogenide Glass Photonic Crystal Waveguides via Silica Optical Fiber Nanowires

Christian Grillet¹, Cameron Smith¹, Darren Freeman², Steve Madden², Barry Luther-Davies², Eric C. Magi¹, David J. Moss¹ and Benjamin J.Eggleton¹

Scalable Ion Trap Quantum Computer Vision

System Compatibility of Quantum & Classical: Spatial Pitch, Clock Speed Operating Temperature, Power Dissipation¹⁵

NJNC Fabricated Plar

Nanocrystal Quantum Dots: Artificial Atoms

Single Quantum Dot Spectra

University of Wurzburg Dr. Lukas Worschech

Fabrication of Nanocrystals Bawendi Group – MIT Banin Group – Hebrew Univ.

NQD Light Emission

(c)

Nanocrystals

- CdSe and CdTe -Shell of ZnS 3-6 nm visible
- PbSe No shell 8 nm infrared (1.5 micron)
- InAs Shell of CdSe and ZnSe 7-8 nm infrared (1.5 micron)

Photography by Felice Frankel

Nanocrystal Quantum Dots as Lasing Media

- Lower threshold than 3D and 2D lasers
- Wavelength (size) tunability
- Thermal gain stability

Summary

• Nanophotonics

- > New lights sources
 - ✓ Single photon sources
 - ✓ Lab on chip sources (e.g. biophysics, cell studies)
- > Nanowires
- Quantum dots
- Nanostructures fibers

Quantum information

- > Microfabrication of traps for ions, atoms and molecules
 - ✓ Ions traps
 - ✓ MEMS SLMs for atom traps
 - ✓ Dipolar molecule traps
- Progress toward controlling many ions and atoms
 First studies of large controlled quantum assembles