Meeting of the Nanoscience Working Group in Szeged, will take place on Sept. 7 – 8.

Thursday afternoon Sept. 7 at 2:00
Room 48, Administration section
Institute of Biophysics.

Thank to IUPAP, and to its Nanoscience Working Group.

Dr. Malik MAAZA
NANOAFNET
Chairman

Prof Aboubaker Chedikh BEYE
NANOAFNET
Vice-Chairman
ICSU Strategic Plan of 2006 –11: the needs of Africa, four priority areas identified by The ICSU Regional Committee for Africa (Prof Sospeter Muhongo)

(a) Health and Human Well-being;
(b) Sustainable Energy;
(c) Natural and Human-induced Hazards and Disasters;
(d) Global Change.

Ensure that Nanoscience and Lasers are in all these topics.

Four Scoping Groups, composed of leading African scientists and engineers, are currently preparing science/work plans on each of these priority areas. see www.icsu-africa.org
Mrs Gugu Mholongo Msc. student from UNIZUL will be attending on the basis of our Dye-Solar Cell Project.
GSAS Fellows: the following experts will serve as lecturers & mentors

- Allan Barnett, University of Delaware (US)
- Andreas Hinsch, Fraunhofer Institute for Solar Energy Systems (Germany)
- Hwei-Liang Huang, National Tsing Hua University (Taiwan)
- Antonio Luque, Instituto de Energia Solar, Universidad Politecnica de Madrid (Spain)
- Bruce Parkinson, Colorado State University (US)
- Wei-Fang Su, National Taiwan University (Taiwan)
- Masafumi Yamaguchi, Toyota Technological Institute (Japan)
...and others to be announced.

Online Application:
http://www.gsasprogram.org

Program Highlights:

- Attend a 10-day GSAS Session in Taiwan with lectures in advanced solar cell research, design, manufacturing, and policy
- Join a multidisciplinary Global Research Team to plan a Solar Cell Research project
- Get Expert Mentoring from world-class researchers, industry planners and policy makers
- Compete for a 1-year Team Research Fellowship in Taiwan!

GSAS is a joint initiative of:

Sponsored by:

Contact Information:
mri@northwestern.edu
Program

8:30 – 9:00 Opening Remarks
- Pedro Hugo Hernandez Tejeda, President, Academia Mexicana de Ciencia de Materiales (MRS-Mexico)
- Jaime Parada Avila, General Director, CONACYT (Mexico)
- Arden Bement, Jr., Director, National Science Foundation (USA)

9:00 – 10:30 Historical Background: Development of the Materials World Network
Chair: R.P.H. Chang, Northwestern University (USA)
- Remarks by Tom Weber, Director, Division for Materials Research, National Science Foundation (USA)
- Overview: R.P.H. Chang, Northwestern University (USA)
 1. Saltillo, Mexico – Mario Lamarca, National Science & Engineering Research Council of Canada (Canada)
 2. Leuven, Belgium – Horst Czichos, TFH Berlin, University of Applied Sciences (Germany)
 3. Rio de Janeiro, Brazil – Guillermo Solorzano, Brazilian Materials Research Society (Brazil)
 5. Pretoria, South Africa – Aboubaker Beye, African Materials Research Society (Senegal)

10:30 – 11:00 Keynote Lecture: Materials Science and its Evolution in this Century: One Perspective
- Praveen Chaudhari, Director, Brookhaven National Laboratory (USA)

11:00 – 11:30 Break

11:30 – 12:00 Current Status of the Materials World Network: Programmatic Partnerships
Carmen Huber - National Science Foundation (USA)
 1. Americas – Colaboracion Interamericana en Materiales (CIAM)
 2. Europe - NSF-Europe and NSF-EC Collaboration in Materials
 3. Africa / Asia – joint programs under development
 4. International Materials Institutes

12:00 – 13:30 MWN Success Stories: Global Collaborations in Research and Education
- Wole Soboyejo, Director, IMI, Princeton University (USA)
- Luis Fuentes, Centro de Investigación en Materiales Avanzados (Mexico)
- Thierry Cardinal and Kathleen Richardson, University of Bordeaux (France) & Clemson University (USA)
- Orlando Auciello, Argonne National Laboratory (USA)
- Hideomi Koinuma, National Institute for Materials Science (Japan)
Division of Materials Research

Materials World Network: Cooperative Activity in Materials Research between US Investigators and their Counterparts Abroad (MWN)

CONTACTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Phone</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Carmen Huber</td>
<td>chuber@nsf.gov</td>
<td>703-292-4939</td>
<td>Office of Special Programs</td>
</tr>
</tbody>
</table>

Contacts at other organizations:

Contact information in participating countries or regions is provided for the convenience of researchers in those countries or regions. Questions from US investigators should be directed to NSF.

Inter-American Materials Collaboration (CIAM) Contacts:

ARGENTINA
Consejo de Investigaciones Científicas y Técnicas (CONICET)
http://www.conicet.gov.ar/
Rivadavia 1917, 1033 Buenos Aires
Dr. Jorge Tezón, Sub Gerente de Fomento Científico y Tecnológico
Tel.: 54-11-4951-4673, Fax: 54-11-4953-7483, jtezon@conicet.gov.ar
Optical transmission of Au-VO₂ nanoplasmonic structure onto Corning glass substrate below & above the transition temperature $T_c \approx 68^\circ C$. The minimina in the 600-650 nm range correspond to plasmon absorption of the nano-gold.

Clear Mention of the Affiliation to the African Laser Centre as well as of the Nelson Mandela--World Bank African Institutes of Science and Technology. He is one of the initiator of the US--Africa initiative in materials sciences. His research encompasses materials sciences and laser spectroscopy.
- Nanoprocessing by laser ablation
- Nanophotonics for VIS-IR modulation
- Nano-plasmonics for tunable ultrafast optical switching
- Nanomaterials for solar energy applications
- Nano-TCOs

- Nano-TCOs
- Nano-materials based Carbon
- Nanopolymers & Ultra-porous polymers
- Nano-porous & Nanohybrids materials
Proposed Agenda, Room 48, Administration Section Institute of Biophysics, Temesvari krt 62, Szeged Hungary (follow-up)

6. Commission Report Updates
 • b) C3 Stat. Phys. A. Hansen
 • c) C5 Low Temp. Phys. M. Paalanen
 • d) C6 Biological Phys. P. Ormos
 • e) C8 Semiconductors P. Hawrylak
 • f) C9 Magnetism D. Dahlberg
 • g) C10 Condensed Matter M. Tegze
 • h) C17 Quantum Electronics R. Slusher
 • i) C20 Computational Phys. R. Nieminen

7. Recommendation for Future Nanoscience Meetings
8. Terms of Working Group Members
9. Other Business

NANO AND LASERS ALL ACROSS THESE DISCIPLINES
COMMUNITY

U.S.–Africa Advanced Studies Institute on Photon Interactions with Atoms and Molecules: Report on Materials Activities
Alfred Z. Msezane, Aboubaker C. Beye, and Uwe Becker

Overview

The U.S.–Africa Advanced Studies Institute on Photon Interactions with Atoms and Molecules, held in Durban, South Africa, November 3–12, 2005, brought together approximately 60 advanced graduate students and postdoctoral researchers and 20 lecturers from the United States, Africa, and Europe. The African participants came mainly from the institutions that constitute the African Laser Centre (ALC), a virtual center of excellence that links scientists and laser facilities in six African nations; it is one of the strongest combinations of human and physical infrastructure for science in Africa.

The general theme of the intensive set of lectures was light–matter interactions, incorporating various fields being studied in the United States and Africa, including atomic, molecular, and optical physics; physical chemistry; and materials science. The lectures addressed the most recent findings in these fields, as well as the theoretical, computational, and experimental tools that will be key to future advances. However, this report focuses only on the materials aspect of the institute: new materials creation, probing and applications.

The institute provided excellent scientific training for young American and African scientists and also helped establish an international network of collaborating scientists, linked through the ALC. Among the positive impacts on Africa were the enhancement of work on industrial and medical applications of photon interactions and acceleration of research on cheaper
NATIONAL PROGRAMS

The Nanosciences African Network: NANOAFNET
M. Maaza and A. C. Beye

Introduction

The Nanosciences African Network (NANOAFNET), modeled along the lines of the African Materials Research Society (AMRS) and the African Laser Centre (ALC), is an initiative consisting of four regions: North, South, East, and West. It represents a wide multidisciplinary approach to materials science and engineering, as well as the design of novel processes and miniaturized devices. The Materials Research Group iThemba LABS, a large national research facility in South Africa with worldwide memoranda of agreement, represents its geographical central node. NANOAFNET's main aims are to exploit nanoscience for cost-effective and easy implementation of nanotechnologies compatible with African needs, and to enhance the international visibility and capacity of African scientific contributions through world-class research in nanoscience and related technologies.
ENSURE THAT LASERS ARE COMPREHENSIVELY TAKEN INTO ACCOUNT INTO OUR CURRICULA
Micro-Groove Geometry and Cell/Surface Interactions

• Cells can undergo contact guidance when in contact with micro-grooved geometries
• This depends on the size of the grooves relative to the size of the cells
• Contact guidance has implications for wound healing and scar tissue formation
SHEAR ASSAY MEASUREMENT OF CELL ADHESION

Shear stress for detachment is given by

$$\tau = \frac{6Q\mu}{wh^2}$$

Where Q - flow rate & μ - dynamic viscosity

Considering initial onset of detachment to correspond to “adhesion” strength:

- $\tau = 41 \pm 8$ Pa Polystyrene (PS)
- $\tau = 61 \pm 8$ Pa Ti Coated PS
Antibody/Antigen Interactions

- Antibody/antigen interactions cause surface stresses to develop
- These surface stresses are the result of new conformations of molecular structures at the surface
- Interactions between Vimentin antibodies and antigens gives rise to surface stress and cantilever deflection
THE FUTURE OF CANTILEVERED BIOMEMS STRUCTURES – BIOMOLECULAR DETECTION

- Research will lead to future cantilevered bioMEMS structures
- Devices may be resonating devices for improved sensitivity
- However, non-resonating devices can also be used
- Multifunctional structures emerging with multiple cantilevers

Functionalized Cantilever
- DNA
- Folic Acid
- Antibodies

Microcantilever Array

Packaging
Our Approach to Early Cancer Detection and Treatment!

A novel use of magnetic fields and magnetic particles to deliver therapeutic drugs at the desired time in the correct dosage to the correct site in the human body.