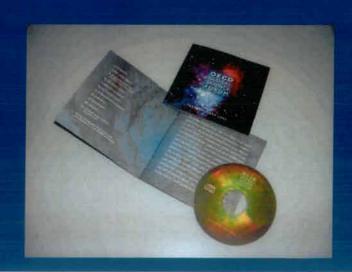
Organisation for Economic Co-operation and Development Global Science Forum

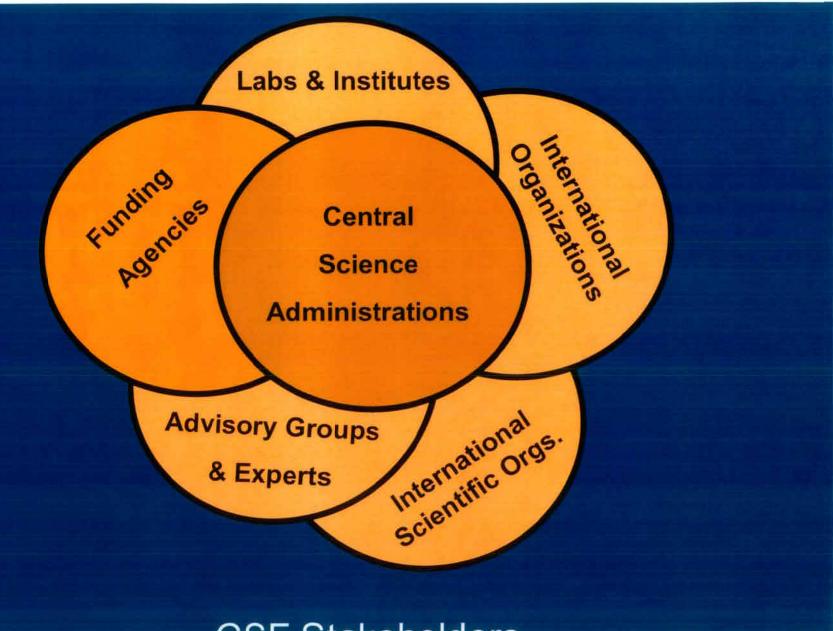
Large-Scale International Scientific Cooperation: A View from OECD

A personal unofficial view

Through the Global Science Forum, senior government officials develop findings and action recommendations on specific science policy issues.

<u>1995 – 2006 Topics:</u>


- Neutron Sources
- High-Energy Neutrinos
- Radio Astronomy
- Proton Accelerators
- Nuclear Physics I
- Structural Genomics
- Condensed Matter Facilities
- High-Intensity Lasers
- Astronomy and Astrophysics
- High-Energy Physics
- Grid Computing


- Science indicators and Models
- Science Education
- Science for a Safer Society
- Bioinformatics
- Neuroinformatics
- Administrative Practices
- Energy Research
- Earthquake Science
- Nuclear Physics II
- Research Misconduct
- Scientific Collections

Global Science Forum activities are proposed by member delegations (governments). If approved, they are organised/facilitated by a small secretariat of international civil servants.

All Global Science Forum activities result in a publiclyavailable policy-level report containing findings and action recommendations for governments, inter-governmental organisations, or the international scientific community.

www.oecd.org/sti/gsf

GSF Stakeholders

Lessons learned: Undertaking an activity

- Scientific opinion should be mature. Scientists should acknowledge need for some "top down" guidance or help
- Interesting science is not enough. Must have a specific problem/challenge/opportunity
- Need interest in 3 regions, and at least some propects for success (ideally, a Ministerial-level endorsement at the end)
- Boundaries must be correctly chosen, especially given increasing links between fields
- Activity must be visible/transparent/inclusive, especially with regard to the scientific community

In most GSF activities, scientific organisations have been invited to participate as equal partners

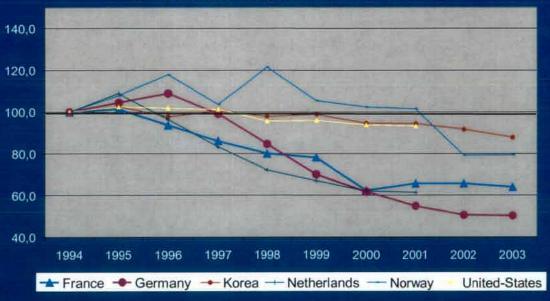
For example, <u>Working Group on Nuclear Physics</u> has 13 countries, plus:

- IUPAP/ICNP
- NuPECC
- CERN
- JINR
- EURISOL

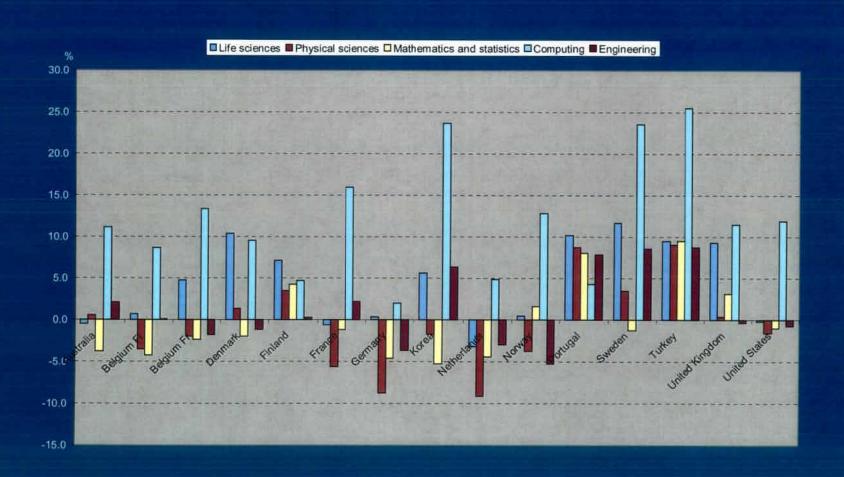
- UNESCO
- Euroscience
- ICSU
- ESF
- IAU
- IUGG

Lessons learned: Externalities

Globalisation Is Happening


- Cold War is over. There are winners and losers, new opportunities and challenges.
- Ongoing revolution in computation, communications, travel, transportation
- Expertise/resources/issues/data are globally distributed. Emerging nations investing in S&T.
- European integration is moving forward. How to reconcile global versus intra-regional cooperation and coordination?

Lessons learned: Externalities, cont.


Greater Social Relevance Expected

- Economic competitiveness (public, private) can interfere with scientific cooperation
- Global-scale issues count (health, environment, energy,...)
- National security issues can take precedence
- Public attitudes to science are evolving (e.g., young people losing interest, mistakes are more visible)
- Lack of reliable indicators and analytical models for assessing societal impact of S&T investments

University graduates in physical sciences in selected countries index 100: 1994

Average annual growth of S&T graduates: 1995-2003

Lessons learned: Externalities, cont.

Greater Social Relevance Expected

- Economic competitiveness (public, private) can interfere with scientific cooperation
- Global-scale issues count (health, environment, energy,...)
- National security issues can take precedence
- Public attitudes to science are evolving (e.g., young people losing interest)
- Lack of reliable indicators and analytical models for assessing societal impact of S&T investments

Lessons learned: Changes in science itself

Larger Scale of Infrastructures Imposed by Science

- Some fields are entering the global-scale megascience era for the first time
- The culture of science is changing
- Large costs suppress duplication, competition
- Smaller number of large facilities aggravates laboratory politics
- Supply/demand issues are rarely addressed

Lessons learned: Changes in science itself, cont.

Stronger Links Between Scientific Fields

- A challenge for traditional academic institutions, funding agencies, scientific organisations.
- A challenge for planning, prioritisation, funding, oversight mechanisms as well.

Increasing Role of Large <u>User Facilities</u>

- National/regional/global balance issues
- Access policies become more visible
- Need for investments, R&D for instrumentation

Lessons learned: About international cooperation itself

Long-range Planning and Prioritising

- National/regional cycles are not synchronised, not sufficiently international
- The spirit of collaboration and sharing is underdeveloped
- Need venues where scientists/officials can interact (e.g., OECD GSF)
- Allowing for serendipity when planning
- The international scientific community does not have the inclination or mechanisms for longrange planning, prioritisation

Lessons learned: About international cooperation itself

Siting Considerations

- Try to keep the politics out; works best when science is the driver, or when choice is obvious
- Recognise/acknowledge political dimension
- The "fair distribution" approach will probably never work
- Take advantage of existing infrastructures
- Be sensitive to local concerns
- Anticipate decommissioning costs

Lessons learned: About international cooperation itself

Organising Large Collaborations

- Understanding the options for legal/organisational/managerial structures
- Speaking the same language about budgets, project stages, approvals, etc.
- Being clear about access policies
- Many collaboration issues big and small will be decided by negotiating agencies
- The intergovernmental negotiations take lots of time

Lessons learned: Pitfalls

- Resolve scientific disputes elsewhere first.
- Try to direct action recommendations to the right authority. Avoid "Someone should do something"
- Don't tackle an issue that is too easy, too hard or politically intractable.
- Try to arrange some kind of follow-up.
 Formulate Ministerial recommendation of possible.